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Abstract—The marine ecosystem faces alarming changes, in-
cluding biodiversity loss and the migration of tropical species
to temperate regions. Monitoring underwater environments and
their inhabitants is crucial, but challenging in vast and uncon-
trolled areas like oceans. Passive acoustics monitoring (PAM) has
emerged as an effective method, using hydrophones to capture
underwater sound. Soundscapes with rich sound spectra indicate
high biodiversity, soniferous fish vocalizations can be detected
to identify specific species. Our focus is on sound separation
within underwater soundscapes, isolating fish vocalizations from
background noise for accurate biodiversity assessment. To ad-
dress the lack of suitable datasets, we collected fish vocalizations
from online repositories and captured sea soundscapes at various
locations. We propose an online generation of synthetic sound-
scapes to train two popular sound separation networks. Our
study includes comprehensive evaluations on a synthetic test set,
showing that these separation models can be effectively applied
in our settings, yielding encouraging results. Qualitative results
on real data showcase the model’s generalization ability. Utilizing
sound separation networks enables automatic extraction of fish
vocalizations from PAM recordings, enhancing biodiversity mon-
itoring and capturing animal sounds in their natural habitats.

Index Terms—bioacoustics, soundscape ecology, deep learning
source separation.

I. INTRODUCTION

The oceans cover 71% of the Earth’s surface and rep-
resent the natural habitat of numerous marine species. The
biodiversity present in these environments is impressive, and
tracking the activity and quantity of all existing species is
essential for monitoring the whole marine ecosystem. In
fact, today more than ever, the environmental issue is of
crucial importance, and the oceans, like the whole planet
Earth, are facing drastic and dramatic changes due to human

MM and ER are supported by the ERC grant no. 802554 (SPECGEO). SZ
is funded under the National Recovery and Resilience Plan (NRRP), Mission
4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December
2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of
University and Research funded by the European Union – NextGenerationEU;
Award Number: Project code CN00000033, Concession Decree No. 1034 of
17 June 2022 adopted by the Italian Ministry of University and Research,
CUP B83C22002930006, project title: National Biodiversity Future Center -
NBFC

Fig. 1. We consider the problem of separating the sound produced by fishes
from the background sound of the sea.

activity, among which overfishing and ocean warming [1].
These changes, in addition to damaging the marine ecosystem,
mainly affect the species that inhabit the sea: monitoring
biodiversity is of vital importance, to understand the trend of
the abundance of marine fauna, identify the most vulnerable
areas, and take action to safeguard endangered species [2].
However, monitoring marine animals is challenging because
many of the methods used on the Earth’s surface for tracking,
such as photos and videos, are often ineffective in the marine
environment, due to the limited accessibility to many areas and
poor light and visibility conditions. Furthermore, a significant
amount of data that can be collected on physical quantities,
such as temperature, salinity and pressure, may not reflect
the biodiversity in a specific location. Therefore, there is
a need for tools capable of overcoming these challenges
and providing an accurate assessment of the marine habitat
biodiversity. Underwater, instead of relying on optical signals,
sound can be used to monitor biodiversity [3]. Indeed, the
acoustic environment faithfully reflects the traits of the fauna
present in a specific location and its behavior [4] [5]. One of
the most popular and effective methods for monitoring marine
biodiversity is passive acoustics monitoring (PAM), which
employs hydrophones to capture underwater sound. Many
aquatic organisms produce species-specific sounds, and mod-
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Fig. 2. Frames from the video captured at Marsa Alam showing the presence of soniferous fish.

ern technologies are becoming more and more convenient and
precise, allowing for very accurate and careful data acquisition.
Acoustic indices were initially used to assess biodiversity from
PAM recordings [6] [5]. These indices are used to estimate
richness, amplitude, heterogeneity and evenness of an acoustic
environment. Some of them are: the acoustic entropy index
(H), which indicates how much the amplitude of a signal is
uniform in time and frequency; the acoustic complexity index
(ACI) which takes into account the variation of a signal in
different frequency bins over time and then averages over the
entire frequency range [7]. While easy to apply, a drawback
of acoustic indices is that they are not learned from data,
and they are not, therefore, discriminative for animal sounds
with respect to sounds with similar patterns, but of a different
origin. Therefore, in order for these techniques to be applied,
only the soundscape produced by natural sources should be
considered. When the objective is to detect fish vocalizations,
the PAM audio signal is usually visualized as a spectrogram
and visually examined by an expert. This approach exploits the
fact that fish vocalize within a relatively narrow range of low
frequencies and often produce repetitive sounds. In this work,
our aim is to present a solution for distinguishing the sound
produced by fish from the background noise, with the goal of
automating fish sound detection process and facilitating the use
of soundscape analysis for biodiversity assessment. We employ
recent advances in sound separation for human speech and
music to the problem of separating fish vocalizations in PAM
recordings. Machine learning techniques, and deep learning,
in particular, require a large amount of data. In supervised
learning, data must be annotated to provide ground truth infor-
mation for training neural networks. Data annotation typically
involves the manual identification of the attributes one wants to
automatically recover. Obtaining annotated data for the task of
sound separation, given a mixed signal, is clearly challenging.
A preferable strategy is to generate training data by combining
individual audio sources. This approach has been largely
exploited for speech, music and anthropic sound. But while for
human speech and music there is an abundance of data, this
is not the case for fish vocalizations. At present, to the best of
our knowledge, no datasets exist that include many examples
of fish vocalization examples. Nonetheless, it is widely recog-

nized that this is required for future progress [8]. Therefore,
we collected a dataset of fish vocalizations from the internet.
It is worth noting that the website https://fishsounds.net/ did
not exist when we started this project. In most cases, we
obtained a single sound example for each species. This limits
the possibility of applying AI techniques to automatically
classify the fish species from sound, as several recordings
for each species would be necessary. In addition, with about
35000 known species of fish, the number of known soniferous
species is quite limited, and while some sources have been
identified, the majority of fish sounds remain unidentified [8].
Nevertheless, vocalizations from different fish species share
similarities and posses distinctive characteristics that enable
training a network that can separate fish-produced sounds from
the background noise, typically consisting from the sound
of waves and snapping shrimps (members of the Alpheidae
family). We created a sound separation dataset by randomly
overlapping fish vocalizations with sea backgrounds recorded
at various locations on the Greek island of Nisyros. We use this
dataset creation process to train two recent and popular archi-
tectures for sound separation: Conv-TasNet [9] (which we will
call TasNet) and Demucs (version 2) [10]. We quantitatively
evaluate the performance of these networks on two synthetic
test sets, one obtained with backgrounds recorded in Nisyros,
and one generated with backgrounds recorded in Favignana
(Italy). We qualitatively show performance on a few examples
of recordings performed in Marsa Alam, Egypt (Fig. 2). Our
quantitative evaluation shows that the sound emitted from
fishes can be successfully recovered from recordings with
noisy background. The network performance visually slightly
decreases in the in-the-wild setting, but still it is possible
to recover the predominant fish sounds even if the networks
have been trained with data captured with different devices in
different locations. To our knowledge, this is the first work
that applies modern sound separation techniques to PAM.

II. RELATED WORK

The assessment of marine biodiversity through acoustic
techniques is evolving rapidly and although several methods
are used, at the moment none of these is considered the ideal
tool for investigating the marine environment and its diversity.
Some existing methods are discussed below.
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A. Classical approaches

Spectrograms are valuable tools to analyze the temporal
variation of an audio signal amplitude at different frequencies.
They represent, through the Fourier transform, the 1D audio
signal with a 2D image, with time and frequency as axes and
pixel intensity as amplitude. By analyzing spectrograms, it
is possible to identify the presence of some marine species
through the identification of image patterns that are indicators
of audio features in the species-specific vocalizations. For
example, it is possible to observe whether the sound emitted
is rhythmic or more smooth and harmonious. These patterns
can be associated to known soniferous species or unidentified
fish sources. While the examination of spectrograms as images
enables the approximate detection of spectral patterns, it is
insufficient for precise identification of the intricate modula-
tion characteristics of underwater animal sounds. Automatic
systems based on pattern recognition in images are often not
sufficient for detecting fish vocalizations, and spectrograms
needs to be inspected manually. However, studies focused
on comprehending the drivers of marine biodiversity changes
typically rely on prolonged audio recordings, spanning months
or years. Conducting a manual analysis of such data is im-
practical. Unsupervised modeling techniques have been used
to analyze spectrograms, with clustering being among the most
widely adopted [11]. Assuming that the data has underlying
patterns, clustering allows grouping elements with similar
characteristics. Hence, large amounts of audio data can be
modeled as a few audio clusters and these can be exploited to
assess biodiversity by measuring per-cluster acoustic metrics.
Unfortunately, this type of analysis can easily fail when non-
biological sources contaminate the collected data [12]. In
addition, it is still necessary to individually analyze the sources
that are part of each cluster to understand the key elements
that contribute to marine biodiversity.

B. Data-driven approaches

Several studies [13]–[22] have been carried out to trace,
recognize, and isolate the biological sound sources present in
nature. The use of machine learning has been fundamental
to obtaining significant results. In particular, in [19], [20],
the authors propose using deep learning to detect odontocete
echolocation and bird sounds, respectively. In [22], Clink et
al. introduce a workflow for the automated detection and
classification of female gibbon calls, testing supervised and
unsupervised approaches. In [21], Li et al. propose to use
generative adversarial networks (GANs) to generate training
data for learning to extract of toothed whales’ whistles from
time-frequency spectrograms. Recently, Sun et al. [?] have
introduced a toolbox for soundscape information retrieval
based on non-negative matrix factorization.

C. Source separation

The work that has led to significant progress in this field
is mainly in music and speech. In these contexts, the sep-
aration task is particularly challenging due to the inherent
complexity of overlapping harmonics, temporal and spectral

variability, and unpredictable background noise. Deep learning
has brought significant advances to source separation by
leveraging the ability of neural networks to model complex,
non-linear relationships and learn high-level abstract features
from data. This paradigm has provided a robust, data-driven
approach to the source separation problem, outperforming
traditional signal processing methods. One of the seminal
works in speech separation is [9], where they propose an
end-to-end, fully-convolutional time-domain audio separation
network that significantly outperformed traditional frequency-
domain methods. While, for music source separation, in [10],
a model is proposed that relies on depthwise separable convo-
lutions and bidirectional LSTMs (Long Short-Time Memory),
leading to improved performance over previous state-of-the-
art methods. Further advances for music source separation
have been made in [23], where a novel Bayesian method for
unsupervised source separation is introduced.

III. METHOD

The problem of separating audio sources consists of break-
ing down a mixture of signals y(t) ∈ RT into its n components
c1(t), . . . , cn(t) ∈ RT , where,

y(t) =

n∑
i=1

ci(t). (1)

The mixture is represented as a vector in the waveform
domain. In our case, we consider n = 2 sources: fish and
background. In order to perform sound separation, we employ
the two aforementioned networks, TasNet and Demucs. These
two types of networks are trained in a supervised manner,
and while both have an encoder-decoder structure and act
directly on the audio waveform, they are fundamentally dif-
ferent: TasNet learns a mask to be applied to the mixture
to filter the desired source signal, whereas Demucs learns
to directly synthesize the required signals without using any
filtering. We train both network with supervised training, on
the same dataset. Critical for the success of the separation
networks is the availability of a large training dataset with
overlapped and separated sources. The availability of such
dataset for the specific case of fish vocalizations poses several
challenges. Here, we contribute with a novel synthetic dataset
that we define as follows. We collected a large set of recorded
vocalizations from online sources, these will be the basis of
the foreground fish source. At the same time, we recorded a set
of diverse sea recordings that constitute the data to represent
background sound. Details on the collected data are reported
in the Experiments section. During training, at each epoch
we create random combinations, with randomized amplitude,
of fish and background audio data. In this way, despite the
limited number of sound sources, in particular for the fish data,
we prevent the networks from overfitting on a fixed training
dataset. Audio data is loaded from the network as a set of
audio chunks of length 44160, obtained by splitting the audio
data with an overlap fraction of 0.25. The foreground fish
vocalization dataset is also loaded as a set of samples with
0.25 overlap, where each sample is a chunk of size 44160.
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The synthetic data for training is created as follows. At each
epoch, for each foreground sample i, we define the two audio
sources s0 (foreground) and s1 (background) as follows:

s0 = kfαfxf

s1 = (1 + kb)xb,

where xf is the sample with index i, and xb is a random
background chunk; kf and kb are two random coefficients
sampled from a uniform distribution, while αf is a fixed
attenuation factor for the fish audio, required to model relative
amplitude in real conditions. In this way, at each epoch, every
fish sample is combined differently with a random background.
We set αf = 0.1.

A. TasNet

TasNet is a convolutional audio separation model in the time
domain, composed by an encoder, a separation module and
a decoder, as shown in figure 3 (A). The encoder transforms
small overlapping fragments of the mixture into feature vectors
in an intermediate latent space. Using this representation, the
separation module calculates a mask for each source. Each
mask, multiplied by the respective intermediate representation
of the mixture, generates the latent features of the relative
source. Finally, the decoder converts each latent representation
into a time-domain waveform, thus obtaining the desired
separated signals. In figure 3 (B) we report the entire system
flowchart from [9].

1) Encoder: Initially, the input mixture is divided into N
overlapping parts xi ∈ RL, where i = 1, . . . , N , each of
length L. Each xi is transformed by the encoder into the
corresponding vector in the latent domain zi ∈ RM through
a 1D convolution operation (formally expressed by a matrix
multiplication) followed by a ReLU activation function G(·):

zi = G(xiS) , (2)

where S is a L×M matrix of convolution coefficients.
2) Separation module: The actual separation of each frag-

ment of the mixture occurs in the separation module, in which
n mask vectors mi ∈ RM are estimated, where i = 1, . . . , n
and n is the number of signals to be separated. Each of these
vectors, being masks, must necessarily be mi ∈ [0, 1]. The
vector representation in the latent space bi ∈ RM of each
signal is calculated by multiplying the relative mask mi by
the mixture zi,

bi = zi ⊙mi (3)

where ⊙ denotes element-wise multiplication. This module is
a temporal convolutional network (TCN) [24], which is fully
convolutional and consists of stacked 1D dilated convolutional
blocks with increasing dilation factors. These factors make it
possible to gradually capture increasingly broad contexts, thus
exploiting long-range dependencies within the signal. Here,
with respect to the architecture described in [9], we do not
make use of the skip connections in the 1D convolutional
blocks.

3) Decoder: The reconstruction of each source is computed
by the decoder. The latter takes as input zi and returns a
vector x̂i in the waveform domain by applying a 1D transposed
convolution operation,

x̂i = ziT (4)

where x̂i ∈ RL is the reconstruction of xi and T is a M × L
matrix of convolution weights.

B. Demucs

Demucs is an autoencoder model made of a convolutional
encoder and a convolutional decoder linked with skip U-Net
connections and a 2-layers bidirectional LSTM. The size of
the latent space is CB = 6.

1) Encoder: As illustrated in figure 4, the encoder consists
of B = 6 stacked convolutional layers, and the number
of output channels Ci in each layer equals the number of
input channels Ci+1 in the next layer. From the second layer
onwards, the output channels are twice the number of input
channels. All these stacked layers have the task of compressing
the information in order to obtain a compact representation
of the training data. The input channels in the first layer are
C0 = 2 and the output channels are C0 = 100. The output
channels in the last layer are CB = 3200, which is the hidden
size of the LSTM.

2) Decoder: Since LSTM outputs a tensor with 2CB chan-
nels, a linear layer is needed to reduce the number of channels
to CB . The decoder is built essentially like the encoder,
but with the convolutional layers put in reverse order and
transposed convolutions instead of the regular convolutions.
The decoder has the task of expanding the dimensions of the
compressed vectors in the latent space to regain vectors with
sizes equal to those of the input space. The last layer returns
tensors with N · C0 channels, synthesizing the N sources
present, initially, in the input mixture.

3) U-network: In this architecture, the encoder layers are
connected to the decoder layers with the same index through
skip connections, as happens in the Wave-U-Net [25]. The
objective of these connections is to connect the various de-
coder layers with those of the encoders to transfer information
directly from ones to the others in such a way as to facilitate
reconstruction. Compared to Wave-U-Net, Demucs skip con-
nections use transposed convolutions instead of linear inter-
polations, since they require less memory and computational
time.

IV. EXPERIMENTS

A. Fish Vocalization Data

We collected 191 audio files corresponding to the vo-
calization of 143 different species. Most of the recordings
were downloaded from FishBase1. The collected data often
exhibit unnatural noise, since in many cases the recordings are
performed in fish tanks. In order to create a dataset that can
be used to synthesize realistic audio data, we preprocessed for

1www.fishbase.org
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Fig. 3. (A): TasNet block diagram. A piece of the input signal is projected into a multidimensional hidden space through the encoder. Then, a separation
module calculates an estimated mask for each individual source. Ultimately, a decoder converts these masked encoded features back into waveform domain
signals. (B): System flowchart. The encoder consists of a 1D convolutional module that maps the mixture into the features space. A temporal convolutional
network (TCN) calculates the mask vectors, and the decoder reconstructs the separated signals by a 1D transposed convolution operation. In the separation
module, different dilation factors in each 1D Conv block are highlighted with different colors. This figure is taken from [9].

noise removal, and normalized for a peak amplitude of −1 dB.
For this purpose, we used the open source software Audacity.
Figure 5 illustrates examples before and after preprocessing.
We employ the fish vocalizations for the online creation of
training samples by combining them with recorded sea back-
grounds ad described previously, and for creating a synthetic
testset with ground-truth separated signals.

B. Sea Recordings

We performed sea recordings at the Greek island of Nisyros
and at the Italian island of Favignana. Greek recordings were
performed in October 2019, April 2021, August 2021, and
October 2021 at different sites around the island, both near
the coast and in the open sea; whether the Italian ones in June
2023. Data were captured with an Aquarian Scientific AS-
1 hydrophone (linear range 1Hz to 100kHz ±2dB, operating
depth 200 mt). Sea recordings in Nisyros are used as back-
grounds for training and test. In addition, we collected a sound
video dataset at Marsa Alam (Egypt) using an action camera
Sony HDR-AS50 Full HD. The audio channel from this data
is used for a qualitative evaluation.

C. Networks Training

During training, we considered different 11 sea recordings
for creating backgrounds, captured in different locations and
different times, and of various duration. The first 5 files were
captured with sample rate of 192K and were converted to
44K. Recordings with length greater than 3 minutes were
divided in multiple files of smaller duration (1 − 2 minutes)
and constitute a dataset of background chunks. We have a total
of 133 files for background. A couple of recordings that we

use for representing backgrounds were manually filtered for
removing fish sounds. This was not necessary for most of the
recordings, where fish sounds were harder to find. We use the
80% of the fish vocalization data for training. We fed both
the networks with samples of size 44160 and trained both
the networks with a learning rate of 0.0001 and a number
of epochs equal to 200. TasNet employs an autoencoder with
512 filters (N), each of length 256 (L). The bottleneck has
256 channels (B), and the convolutional blocks contain 512
channels (H). For convolutional operations, we use a kernel
size of 3 (P) across 8 blocks (X) that are repeated 4 times
(R). The network is designed to separate inputs into 2 distinct
”speakers” (C).

D. Evaluation

For the quantitative evaluation, we generated a set of
synthetic inputs using the 20% fish vocalizations that were
not used for training, combining these sounds at random
with background chunks also not used for training. For the
qualitative evaluation of the data recorded in Egypt, we trained
the network using the whole vocalization dataset. We apply the
trained TasNet and Demucs networks to the synthetic testset
and quantify the sound separation performance, computing an
SDR (Source to Distortion Ratio) score [27], is considered an
excellent metric to assess sound quality, between recovered
and ground truth fish and background audio sources. In order
to compute the SDR score, the reconstruction ŝi of a source
starget is assumed of consisting of four components:

ŝi = starget + einterf + eartif + enoise
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Fig. 4. (A): Demucs model with the input mixture and the two output sources, all in the waveform domain. (B): Encoder/decoder block architecture. In each
encoder block, there is a convolution with kernel size K = 8 (to have dependencies with adjacent time steps) and stride S = 4 followed by a ReLU activation
function. The result is given as input to another convolution with kernel size K = 1 and stride S = 1, in order to increase the expressivity of the network
with little additional computation. In the end, a gated linear unit (GLU) activation function [26] is applied. The decoder block is constructed in reverse order
with respect to the encoder, and it consists of a convolution with kernel size K = 3 and stride S = 1, followed by a GLU and then a transposed convolution
with kernel size K = 8 and stride S = 4, followed by a ReLU. This figure is taken from [10].

Fig. 5. Fish vocalization before (top) and after (bottom) noise removal and normalization. Time in seconds.

where einterf , eartif and enoise are respectively error terms
for interference, artifacts and noise [27]. Using these terms, the
SDR is expressed as:

SDR := 10 log10

(
∥starget∥2

∥einterf + eartif + enoise∥2

)
.

Table I reports our results (the higher, the better).
We note from Table I that the Tasnet network performs

significantly better than Demucs. The former reaches an SDR
score equal to 10.59 on the separation of the sound of the fish
and 17.60 on the background, while the latter obtains just 2.65
of SDR on the background and even a negative score on fish,
equal to −5.96 of SDR. Figure 6 and 7 show two randomly
selected examples of separation. Although the separations
produced by Demucs appear to be perceptibly better, it can be
seen how they show artifacts; in particular, vertical lines are
introduced that are repeated periodically, while in Tasnet, this

TABLE I
QUANTITATIVE EVALUATION ON THE SYNTHETIC TESTSET USING

NISYROS BACKGROUNDS.

Metric TasNet

Channel Value

SDR Fish 10.60 ± 9.00
SDR Background 17.60 ± 7.04

Metric Demucs

Channel Value

SDR Fish −3.71± 2.03
SDR Background 2.65± 4.05

behavior is not present. Furthermore, it is possible to notice
how, on the synthetic data, in correspondence with the sounds
of the fish, Demucs generates fictitious frequencies that are
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Ground truth fish:

Network input:

Estimated fish (TasNet result):

Estimated background (TasNet result):

Estimated fish (Demucs result):

Estimated background (Demucs result):

Fig. 6. Synthetic testset example. From top: fish vocalization (Prionotus) (4 seconds); overlap with sea background; TasNet fish and background separation;
Demucs fish and background separation. Vertical axis is frequency, horizontal axis is time.

TABLE II
QUANTITATIVE EVALUATION ON THE SYNTHETIC TESTSET USING

FAVIGNANA BACKGROUNDS.

Metric TasNet

Channel Value

SDR Fish 8.11 ± 15.48
SDR Background 6.27 ± 5.14

Metric Demucs

Channel Value

SDR Fish −5.27± 7.92
SDR Background −2.81± 2.14

not present in the TasNet separations. This is probably due
to the fact that Demucs is a network that does not separate
the signal by filtering it, but by directly synthesizing the
requested source, not performing well with the data of our
dataset. Instead, Tasnet, a more classical network that filters
the desired signal from the mixture, appears to be more robust
and performs better with the data in our possession. Results
in Table II, obtained with a set of backgrounds captured at
different locations in relation to the data used for training,
further confirm the above discussion. Figure 8 and 9 show
two examples of separation applied to the data recorded in
Marsa Alam. Note that the performance of the networks are
here qualitatively lower than on the synthetic dataset, and
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Ground truth fish:

Network input:

Estimated fish (TasNet result):

Estimated background (TasNet result):

Estimated fish (Demucs result):

Estimated background (Demucs result):

Fig. 7. Synthetic testset example. From top: fish vocalization (Epinephelus guttatus) (2 seconds); overlap with sea background; TasNet fish and background
separation; Demucs fish and background separation. Vertical axis is frequency, horizontal axis is time.

this can be due in particular to the distribution shift between
the background data: while in the Aegean Sea we noticed
a consistent presence of clicks sounds emitted by shrimps,
these are not present in the Marsa Alam dataset. Moreover,
the latter data includes a significant sensor noise. Despite these
differences, both networks are able to identify sounds that we
can attribute to the fish species observed in the video channel
of the captured data.

V. CONCLUSION

With this study, we demonstrate the effective application
of deep learning techniques for source separation of ma-
rine data. We achieve this by applying the most effective

source separation architectures to the problem of isolating
fish vocalizations from sea background, obtaining competitive
signal-to-distortion ratio (SDR) scores on a synthetic test set
generated composing real animal and background sources.
Notably, as observed by experts, our trained networks also
perform qualitatively well on in-the-wild data, captured with
a different device in a different environment. We attribute this
generalization ability to our online training strategy, where a
new synthetic training set is generated at each epoch. We hope
these results will pave the way for new methods of studying
the marine environment and contribute to developing new
automatic PAM techniques for monitoring marine biodiversity
and, possibly, accurately tracking fauna in the oceans.
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Network input:

Estimated fish (TasNet result):

Estimated background (TasNet result):

Estimated fish (Demucs result):

Estimated background (Demucs result):

Fig. 8. In-the-wild experiment at Marsa Alam (20 seconds). From top: sea recording; TasNet fish and background separation; Demucs fish and background
separation. Vertical axis is frequency, horizontal axis is time.
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