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Experimental device-independent certified
randomness generation with an instrumental
causal structure
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Daniel Cavalcanti4, Rafael Chaves5,6 & Fabio Sciarrino 1✉

The intrinsic random nature of quantum physics offers novel tools for the generation of

random numbers, a central challenge for a plethora of fields. Bell non-local correlations

obtained by measurements on entangled states allow for the generation of bit strings whose

randomness is guaranteed in a device-independent manner, i.e. without assumptions on the

measurement and state-generation devices. Here, we generate this strong form of certified

randomness on a new platform: the so-called instrumental scenario, which is central to the

field of causal inference. First, we theoretically show that certified random bits, private

against general quantum adversaries, can be extracted exploiting device-independent

quantum instrumental-inequality violations. Then, we experimentally implement the corre-

sponding randomness-generation protocol using entangled photons and active feed-forward

of information. Moreover, we show that, for low levels of noise, our protocol offers an

advantage over the simplest Bell-nonlocality protocol based on the Clauser-Horn-Shimony-

Holt inequality.
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The generation of random numbers has applications in a
wide range of fields, from scientific research—e.g. to
simulate physical systems—to military scopes—e.g. for

effective cryptographic protocols—and every-day concerns—like
ensuring privacy and gambling. From a classical point of view, the
concept of randomness is tightly bound to the incomplete
knowledge of a system; indeed, classical randomness has a sub-
jective and epistemological nature and is erased when the system
is completely known1. Hence, classical algorithms can only gen-
erate pseudo-random numbers2, whose unpredictability relies on
the complexity of the device generating them. Besides, the certi-
fication of randomness is an elusive task, since the available tests
can only verify the absence of specific patterns, while others may
go undetected but still be known to an adversary3.

On the other hand, randomness is intrinsic to quantum sys-
tems, which do not possess definite properties until these are
measured. In real experiments, however, this intrinsic quantum
randomness comes embedded with noise and lack of complete
control over the device, compromising the security of a quantum
random-number generator. A solution to that is to devise
quantum protocols whose correctness can be certified in a device-
independent (DI) manner. In such a framework, properties of the
considered system can be inferred under some causal assump-
tions, not requiring a precise knowledge of the devices adopted in
the implementation. For instance, from the violation of a Bell
inequality4,5, under the assumption of measurement indepen-
dence and locality, one can ensure that the statistics of certain
quantum experiments cannot be described in the classical terms
of local deterministic models, hence being impossible to be
deterministically predicted by any local observer. Moreover, the
extent of such a violation can provide a lower bound on the
certified randomness characterizing the measurement outputs of
the two parties performing the Bell test, as introduced and
developed in refs. 6–8. Several other seminal works based on Bell
inequalities have been developed9–22, advancing the topics of
randomness amplification (the generation of near-perfect ran-
domness from a weaker source), randomness expansion (the
expansion of a short initial random seed), and quantum key
distribution (sharing a common secret string through commu-
nication over public channels). In particular, loophole-free Bell
tests based on randomness generation protocol have been
implemented7,20,23 and more advanced techniques have been
developed to provide security against general adversarial
attacks19,21,24,25.

From a causal perspective, the non-classical behavior revealed
by a Bell test lies in the incompatibility of quantum predictions
with our intuitive notion of cause and effect26–28. Given that
the causal structure underlying a Bell-like scenario involves five
variables (the measurement choices and outcomes for each of
the two observers and a fifth variable representing the common
cause of their correlations), it is natural to wonder whether a
different, and simpler, causal structure could give rise to an
analogous discrepancy between quantum and classical causal
predictions29,30. The instrumental causal structure31,32, where the
two parties (A and B) are linked by a classical channel of com-
munication, is the simplest model (in terms of the number of
involved nodes) achieving this result33. This scenario has fun-
damental importance in causal inference, since it allows the
estimation of causal influences even in the presence of unknown
latent factors31.

In this letter, we provide a proof-of principle demonstration of
the implementation of a DI random number generator based on
instrumental correlations, secure against general quantum
attacks19.

Our protocol is DI, since it does not require any assumption
about the measurements and states used in the protocol, not even

their dimension. Furthermore, in our case, the causal assumption
consists in the requirement that A’s measurement choice does
not have a direct influence over B. In practical applications, this
premise can be enforced, by shielding A’s measurement station,
in order to allow only for the communication of its outcome bit
to B and prevent any other unwanted communication. To
implement the protocol in all of its parts, we have set up a
classical extractor following the theoretical design by Trevisan34.
Moreover, we prove that DI randomness generation protocols
implemented in this scenario, for high state visibilities, can bring
an advantage in the gain of random bits when compared to those
based on the simplest two-input-two-output Bell scenario, the
Clauser–Horn–Shimony–Holt (CHSH)35. Therefore, this work
paves the way to further applications of the instrumental sce-
nario in the field of DI protocols, which, until now, have relied
primarily on Bell-like tests.

Results
Randomness certification via instrumental violations. Let us
first briefly review some previous results obtained in the context
of Bell inequalities4. In a CHSH scenario35, two parties, A and B,
share a bipartite system and, without communicating to each
other, perform local measurements on their subsystems. If A and
B choose between two given operators each, i.e. (A1, A2) and (B1,
B2) respectively, and then combine their data, the mean value of
the operator S ¼ j A1;B1h i � A1;B2h i þ A2;B1h i þ A2;B2h ij
should be upper-bounded by 2, for any deterministic model
respecting a natural notion of locality. However, as proved in
ref. 35, if A and B share an entangled state, they can get a value
exceeding this bound, whose explanation requires the presence of
non-classical correlations between the two parties. Hence, Bell
inequalities have been adopted in ref. 7 to guarantee the intrinsic
random nature of A’s and B’s measurements’ outcomes, within a
DI randomness generation and certification protocol.

In the instrumental causal model, which is depicted in Fig. 1a,
the two parties (Alice and Bob) still share a bipartite state. Alice
can choose among l possible d-outcome measurements (O1

A, ...,
Ol

A), according to the instrument variable x, which is independent
of the shared correlations between Alice and Bob (Λ) and can
assume l different values. On the other hand, Bob’s choice y is
among d observables (O1

B, ..., O
d
B) and depends on Alice’s outcome

a, specifically y = a. In other words, as opposed to the spatially-
separated correlations in a Bell-like scenario, the instrumental
process constitutes a temporal scenario, with one-way commu-
nication of Alice’s outcomes to select Bob’s measurement. This
implies, first, that Alice and Bob are not space-like separated, to
ensure that the causal structure’s constraints are fulfilled, unlike
in Bell-like scenarios. Secondly, due to the communication of
Alice’s outcome a to Bob, Bob’s outcome b is not independent of
x; however, the instrumental network specifies this influence to be
indirect, formalized by the constraint p(b∣x, a, λ) = p(b∣a, λ) and
justifying the absence of an arrow from X to B in Fig. 1a. This is
the aforementioned causal assumption within our protocol.

Similarly to Bell-like scenarios, the causal structure underlying
an instrumental process imposes some constraints on the classical
joint probabilities {p(a, b∣x)}a,b,x that are compatible with it31,32

(the so-called instrumental inequalities). In the particular case
where the instrument x can assume three different values (1,2,3),
while a and b are dichotomic, the following inequality holds32:

I ¼ Ah i1 � Bh i1 þ 2 Bh i2 � ABh i1 þ 2 ABh i3 ≤ 3 ð1Þ

where ABh ix ¼
P

a;b¼0;1ð�1Þaþbpða; bjxÞ. Remarkably, this
inequality can be violated with the correlations produced by
quantum instrumental causal models33, up to the maximal value
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of I ¼ 1þ 2
ffiffiffi
2

p
. Recently, the relationship of the instrumental

processes with the Bell scenario has been studied in ref. 36.
In this context, we rely on the fact that if a given set of statistics

{p(a, b∣x)}a,b,x violates inequality (1), then the system shared by
the two parties exhibits non-classical correlations that impose
non-trivial constraints on the information a potential eaves-
dropper could obtain, represented in the probability distributions
{p(a, b, e∣x)}a,b,e,x, where e is the eventual side information of the
eavesdropper. Consequently, this restricts the values of the
conditional min-entropy, a randomness quantifier defined as
Hmin ¼ �log 2½

P
ePðeÞmax

a;b
Pða; bje; xÞ�37. Indeed, it is possible

to obtain a lower-bound on the min-entropy, for each x, as a
function fx of I : Hmin ≥ f xðIÞ (or, equivalently, of the visibility,
see Fig. 1b). For each x and I , the lower bound f xðIÞ can be
computed via semidefinite programming (SDP), by maximizing P
(a, b∣e, x), under the constraint that the observable terms of the
probability distribution are compatible to the laws of quantum
mechanics and that the corresponding violation is I . The first

constraint is imposed by exploiting the NPA hierarchy38. Indeed,
such a general method can be applied to any casual model
involving a shared bipartite system, on whose subsystems local
measurements are performed. Note that, when adopting the NPA
method for an instrumental process, no constraints are applied to
the untested terms of the form p(a, b∣e, x, y ≠ a) and that the
solution of such an optimization will, in general, provide a lower
amount of certifiable randomness, with respect to a scenario
where all the combinations were tested (for further details, see
Supplementary Information note 1). The functions fx are convex
and grow monotonically with I ; so, the higher the violation of
inequality (1) is, the higher the min-entropy lower bound will be.
Nevertheless, in real experimental conditions, in order to evaluate
the quantum violation extent I� (or, analogously, the probability
distribution p*(a, b∣x)) to compute fx, several experimental runs
are necessary. Therefore, unless one makes the “iid assumption”
(i.e. all the experimental runs are assumed to be identically and
independently distributed, “iid”, so both the state source, as well
as Alice’s and Bob’s measurement devices, are supposed not
to exhibit time-dependent behaviors), this bound f xðI�Þ will not
hold in the presence of an adversary that could include a
(quantum) memory in the devices, introducing interdependences
among the runs. Several DI protocols have been proposed so far
addressing the most general non-iid case13,16,39, but at the cost of
a low feasibility. Only very recently feasible solutions have been
proposed19,24,25,40. In particular, we will consider the technique
developed in ref. 19, resorting to the “Entropy Accumulation
Theorem” (EAT), in order to deal with processes not necessarily
made of independent and identically distributed runs. Such a
method has been recently applied to the CHSH scenario21.

Here we adapt the technique developed in ref. 19 to the
instrumental scenario, making our randomness certification,
whose scheme is depicted in Fig. 1c, secure against general
quantum attacks. According to the EAT, for a category of
processes that comprehends also an implemented instrumental
process composed of several runs, the following bound on the
smooth min-entropy holds:

Hϵ
minðOnjSnEnÞ>nt � ν

ffiffiffi
n

p
; ð2Þ

where O are the quantum systems given to the honest parties
Alice and Bob, at each run, S constitutes the leaked side-
information, while E represents any additional side information
correlated to the initial state. Then, t is a convex function which
depends on the extent of the violation, expected by an honest,
although noisy, implementation of the protocol, i.e. in a scenario
with no eavesdropper (Iexp). On the other hand, ν depends also
on the smoothing parameter ϵ, which characterizes the smooth
min-entropy Hϵ

min, and ϵEA, i.e. the desired error probability of
the entropy accumulation protocol; in other words, either the
protocol aborts with probability higher than 1 − ϵEA or bound
(2) holds (for further detail, see Supplementary Information
note 2).

Our protocol is implemented as follows (see Fig. 2): for each
run, a random binary variable T is drawn according to a Bernoulli
distribution of parameter γ (set by the user); if T = 0, the run is
an “accumulation” run, so x is deterministically set to 2 (which
guarantees a higher f ðIÞ, see Supplementary Information note 2);
on the other hand, if T = 1, the run is a “test” run, so x is
randomly chosen among 1, 2 and 3. After m test runs (with m
chosen by the user), the quantum instrumental violation is
evaluated from the bits collected throughout the test runs and, if
lower than Iexp � δ0 (δ0 being the experimental uncertainty on I),
the protocol aborts; otherwise the certified smooth min-entropy is
bounded by inequality (2). This lower bound on the certified min
entropy represents the maximum certified amount of bits that we

Secure 
random bits010010

101001

110001
1001

Seed

Fig. 1 Randomness generation and certification protocol. a Instrumental
causal structure represented as a directed acyclic graph26 (DAG), where
each node represents a variable and the arrows link variables between
which there is causal influence. In this case, X, A, and B are observable,
while Λ is a latent variable. b The plot shows the smooth min-entropy
bound for the CHSH (Clauser–Horn–Shimony–Holt) inequality and the
instrumental scenario (respectively dashed and continuous curve), in terms
of the state visibility v, i.e. considering the extent of violation that would be
given by the following state: ρ ¼ v ψ�j i ψ�h j þ ð1� vÞ I

4. The bounds were
obtained through the analysis of ref. 19, secure against general quantum
adversaries, which was adapted to our case. The choice of parameters was
the following: n = 1012, ϵ = ϵEA = 10−6, δ0 ¼ 10�4 and γ = 1. In detail, n is
the number of runs, ϵ is the smoothing parameter characterizing the min-
entropy Hϵ

min, ϵEA is the desired error probability of the entropy
accumulation protocol, δ0 is the experimental uncertainty on the evaluation
of the violation I and γ is the parameter of the Bernoulli distribution
according to which we select “test” and “accumulation” runs throughout
the protocol. c Simplified scheme of the proposed randomness generation
and certification protocol (in the case γ = 1): (i) initial seed generation
(defining, at each run, Alice's choice among the operators), (ii)
instrumental process implementation, (iii) classical randomness extractor.
The initial seed is obtained from the random bits provided by the NIST
Randomness Beacon42. In the second stage, Alice's and Bob's outputs are
collected and the corresponding value of the instrumental violation I� is
computed. If it is higher than a threshold set by the user, the smooth min-
entropy is bounded by inequality (2), otherwise the protocol aborts. The
value of the min-entropy indicates the maximum number of certified
random bits that can be extracted. At the end, if the protocol does not
abort, the output strings are injected in a classical randomness extractor
(Trevisan's extractor34) and the final string of certified random bits is
obtained. The extractor's seed is as well provided by the NIST Randomness
Beacon.
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can extract from our collected data. Hence, feeding the raw bit
string and the Hϵ

min to the classical extractor34, the algorithm will
output at most Hϵ

minðOnjSnEnÞ certified random bits, the exact
value depending on its internal error parameter ϵext. Specifically,
we resorted to the classical extractor devised by Trevisan34. This
algorithm takes as inputs a “weak randomness source”, in our
case the 2n raw bits long string, and a seed, which is poly-
logarithmic in the input size (our code for the classical extractor
can be found at41 and, for a detailed description of the classical
randomness extractor, see Supplementary Information note 3).

Experimental implementation of the protocol. The DI random
numbers generator, in our proposal, is made up of three main
parts, which are seen as black boxes to the user: the state gen-
eration and Alice’s and Bob’s measurement stations. The causal
correlations among these three stages are those of an instrumental
scenario (see Fig. 1a,c) and are implemented through the pho-
tonic platform depicted in Fig. 3.

Within this experimental apparatus, the qubits are encoded in
the photon’s polarization: horizontal (H) and vertical (V)
polarizations represent, respectively, qubits 0 and 1, eigenstates
of the Pauli matrix σz. A spontaneous parametric down-
conversion (SPDC) process generates the two-photon maximally
entangled state jΨ�i ¼ jHVi�jVHiffiffi

2
p . One photon is sent to path 1,

towards Alice’s station, where an observable among O1
A, O

2
A and

O3
A is measured, applying the proper voltage to a liquid crystal

device (LCD). The voltage must be chosen according to a random

seed, made of a string of trits (indeed, in our case, we take γ = 1,
so x is chosen among (1,2,3) at every run). This seed is obtained
from the NIST Randomness Beacon42, which provides 512
random bits per minute. After Alice has performed her
measurement, whenever she gets output 1 (i.e. D0

A registers an
event), the detector’s signal is split to reach the coincidence
counter and, at the same time, trigger the Pockels cell on path 2.
Bob’s station is made of a half waveplate (HWP) followed by this
fast electro-optical device. When no voltage is applied to the
Pockels cell, Bob’s operator is O1

B and, when it is turned on, there
is a swift change to O2

B (the cell’s time response is of the order of
nanoseconds). In order to have the time to register Alice’s output
and select Bob’s operator accordingly, the photon on path 2 is
delayed, through a 125 m long single-mode fiber.

The four detectors are synchronized in order to distinguish the
coincidence counts generated by the entangled photons’ pairs
from the accidental counts. Let us note that our proof of principle
is not loophole free, since it requires the fair sampling
assumption, due to our overall low detection efficiency. However,
such a limitation belongs to this specific implementation and not
to the proposed method. The measurement operators achieving
maximal violation of I ¼ 1þ 2

ffiffiffi
2

p
, when applied to the state

jψ�i, are the following: O1
A ¼ �ðσz � σxÞ=

ffiffiffi
2

p
, O2

A ¼ �σx, O
3
A ¼

σz and O1
B ¼ ðσx � σzÞ=

ffiffiffi
2

p
, O2

B ¼ �ðσx þ σzÞ=
ffiffiffi
2

p
.

Once the instrumental process is implemented, the threshold
Iexp is set, corresponding to the violation that is expected by an
honest implementation of the protocol. In our case, given that our

Fig. 2 Implementation of the device-independent randomness certification protocol. The implementation of our proposed protocol involves three steps.
First of all, an instrumental process is implemented on a photonic platform. Then, for each round of the experiment, a binary random variable T is evaluated.
Specifically, T can get value 1 with probability γ, previously chosen by the user (in our implementation, γ = 1). If T = 0, the run is an “accumulation” one, and
x is deterministically equal to 2. If T = 1, the run is a “test” run and x is randomly chosen among 1, 2, and 3. Note that, in our case, we only have “test” runs.
Secondly, after n runs, through the bits collected in the test runs, we evaluate the corresponding instrumental violation and see whether it is higher than the
expected violation for an honest implementation of the protocol, i.e. in a scenario with no eavesdroppers. In our case, we set the threshold to 3.5. If it is
lower, the protocol aborts, otherwise, the protocol reaches the third stage, where we employ the Trevisan extractor, to extract the final certified random bit
string. The extractor takes, as input, the raw data (weak randomness source), a random seed (given by the NIST Randomness Beacon42) and the min-
entropy of the input string. In the end, according to the classical extractor statistical error (ϵext) set by the user (in our case 10−6), the algorithm extracts m
truly random bits, with m < n.
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expected visibility amounts to 0.915, Iexp ¼ 3:5. Then, the desired
level of security is imposed by tuning the internal parameters,
detailed in the SI, contributing to ν. As next step, according to Eq.
(2), one can either fix the number of the desired output random
bits and perform the required number of runs or, viceversa, fix
the amount of initial randomness to feed the protocol, and hence
the number of feasible runs. In the end, the classical randomness
extractor is applied to the raw bit strings. Specifically, in our case,
we adopted the one devised by Trevisan34. The complete
procedure is summarized in Fig. 2.

Theoretical results. The DI random number generation protocol
we propose for the instrumental scenario was developed adapting
the pre-existing techniques for the Bell scenario19,21, and is secure
against general quantum adversaries. The most striking aspect of
our protocol, shown in Fig. 4, is that, under given circumstances,
our protocol proves to be more convenient than its CHSH-based
counterpart. This becomes visible if we compare the amount of
truly random bits within Alice’s and Bob’s output strings
throughout all the experimental runs (given by Hϵ

min) for our
protocol and its CHSH-based counterpart, in the case of a fixed
amount of invested bits, for the parties’ inputs and for T. This will
result in a different number of feasible runs for the two cases.
Such a difference, in the regime of high state visibilities v (~ 0.98),
considering a violation extent compatible to the following state
ρ ¼ v ψ�j i ψ�h j þ ð1� vÞ I4, and large amounts of invested ran-
dom bits, brings the ratio of the two gains (Hϵ Instr

min =HϵCHSH
min ), as

shown in Fig. 4, to be higher than 1.

Experimental results. We implemented the instrumental scenario
on a photonic platform and provided a proof of principle of the
proposed quantum adversary-proof protocol in our experimental
conditions. In particular, for our expected visibility, of 0.915, we put
our threshold to Iexp ¼ 3:5, with δ0 ¼ 0:011. Furthermore, we set
ϵEA = ϵ = 10−1 and fixed the amount of initial randomness to
172,095 experimental runs. Since the registered violation was of
3.516 ± 0.011, compatible to a state ρ ¼ v ψ�j i ψ�h j þ ð1� vÞ I4,
with v = 0.9186 ± 0.030, our certified smooth min-entropy bound,
according to inequality (2), was 0.031125, which allowed us to gain,
through the classical extractor, an overall number of 5270 random
bits, with an error on the classical extractor of ϵext = 10−6. Note
that each experimental run lasted ~1s and the bottleneck of our
implementation is the time response of the liquid crystal, ~700 ms,
that implements Alice’s operator. Hence, in principle, significantly
higher rates can be reached on the same platform, adopting a fast
electro-optical device also for Alice’s station, with a response time
of ~100 ns.

The length of the seed required by the classical extractor, as
mentioned, is poly-logarithmic in the input size and its length
also depends on the chosen error parameter ϵext (which is the
tolerated distance between the uniform distribution and the one
of the final string) and on the particular algorithm adopted. In
our case, we used the same implementation of refs. 41,43, which
was proven to be a strong quantum proof extractor by De et al. 44.
With respect to other implementations of the Trevisan extrac-
tor45, ours requires a longer seed, but allows to extract a higher
amount of random bits. Let us note that, since the length of the
seed grows as log(2n)3, where n is the number of experimental
runs, the randomness gain is not modified if we take also into
account the bits invested in the classical extractor’s seed. Indeed,
the number of extracted bits grows polynomially in n. Hence, if
Hϵ

minInstr>H
ϵ
minCHSH , then mInstr � dInstr>mCHSH � dCHSH, where m

is the length of the final string (after the classical extraction) and
d the length of the required extractor’s seed. For more details

ALICE

BOB

NIST 1 2

Feed-Forward

DB
0

DB
1

DA
1

DA0

SPDC

Liquid
Crystal
Fiber
delay

Pockels
cell

Single 
mode fiber

PBS QWP

HWP

Coupler

Detector

EPR

Fig. 3 Experimental apparatus. A polarization-entangled photon pair is
generated via spontaneous parametric down-conversion (SPDC) process in
a nonlinear crystal. Photon 1 is sent to Alice's station, where one of three
observables (O1

A, O
2
A, and O3

A) is measured through a liquid crystal followed
by a polarizing beam splitter (PBS). The choice of the observable relies on
the random bits generated by the NIST Randomness Beacon42. Detector D0

A

acts as trigger for the application of a 1280 V voltage on the Pockels cell,
whenever the measurement output 0 is registered. The photon 2 is delayed
600 ns before arriving to Bob's station by employing a single-mode fiber
125 m long. After leaving the fiber, the photon passes through the Pockels
cell, followed by a fixed half waveplate (HWP) at 56.25∘ and a PBS. If the
Pockels cell has been triggered (in case of A measurement outcome is 0),
its action combined to the fixed HWP in Bob's station allows us to perform
O1
B. Otherwise (if A measurement outcome is 1), the Pockels cell acts as the

identity and we implement O2
B .

Fig. 4 Comparison between Clauser–Horn–Shimony–Holt (CHSH) and
Instrumental random bits gain. The plot shows the ratio between the
random bits gained throughout all the runs of the proposed protocol (given
by Hϵ

min), involving the instrumental scenario, over those gained in its
regular CHSH-based counterpart19,21, when fixing the amount of random
bits feeding both the protocols. Under these circumstances, given that for
each test run the instrumental test requires log2(3) input bits, instead of the
2 of the regular CHSH, the final amounts of random bits in the two cases
will differ, due to the different amounts of performed runs, besides their
different min-entropies per run. Note that the amount of performed runs
depends on the value of γ, i.e. the probability of a test run, which was
optimized separately for the two scenarios. In particular, the curves
represent different amounts of initially invested random bits, in particular
n = 108 (blue, lowest curve), n = 109 (golden, middle curve) and n = 1010

(red, highest curve), in terms of the state visibility v, i.e. corresponding to
the extent of violation that would correspond to the following state:
ρ ¼ v ψ�j i ψ�h j þ ð1� vÞ I

4.
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about the internal functioning of the classical randomness
extractor and its specific parameter settings, see Supplementary
Information note 3.

Discussion
In this work we implemented a DI random number generator
based on the instrumental scenario. This shows that instrumental
processes constitute an alternative venue with respect to Bell-like
scenarios. Moreover, we also showed that, in regimes of high
visibilities and high amounts of performed runs, the efficiency of
the randomness generated by the violation of the instrumental
inequality (1) can surpass that of efficiency of the CHSH
inequality, as shown in Fig. 4. Indeed, for high visibilities, as it can
be seen in Fig. 1b, the min-entropy per run guaranteed in the two
scenarios has a similar value and, when the number of runs raises,
the advantage brought by the instrumental test, by needing only
log2(3) input bits, instead of 2, prevails.

Through the proposed protocol, we could extract an overall
number of 5270 random bits, considering a threshold for the
instrumental violation of Iexp ¼ 3:5 and 10−1, both as error
probability of the entropy accumulation protocol (ϵEA), as well as
smoothing parameter (ϵ). The conversion rate, from public to
private randomness, as well as the security parameters, could be
improved on the same platform, by raising the number of
invested initial random bits, or, analogously, the number of runs.
To access the regime in which the instrumental scenario is more
convenient than the CHSH one, we should invest a number of
random bits over 109 and obtain a visibility of ~0.98 (note that,
the more the amount of invested bits grows, the more the
threshold for the visibility lowers down).

This proof of principle opens the path for further investigations
of the instrumental scenario as a possible venue for other infor-
mation processing tasks usually associated to Bell scenarios, such as
self-testing46–55 and communication complexity problems56–58.

Methods
Experimental details. Photon pairs were generated in a parametric down-
conversion source, composed by a nonlinear crystal beta barium borate (BBO) of 2-
mm thick injected by a pulsed pump field with λ = 392.5 nm. After spectral
filtering and walk-off compensation, photons of λ = 785 nm are sent to the two
measurement stations A and B. The crystal used to implement active feed-forward
is a LiNbO3 high-voltage micro Pockels Cell—made by Shangai Institute of
Ceramics with < 1 ns risetime and a fast electronic circuit transforming each Si-
avalanche photodetection signal into a calibrated fast pulse in the kV range needed
to activate the Pockels Cell—is fully described in ref. 59. To achieve the active feed-
forward of information, the photon sent to Bob’s station needs to be delayed, thus
allowing the measurement on the first qubit to be performed. The amount of delay
was evaluated considering the velocity of the signal transmission through a single-
mode fiber and the activation time of the Pockels cell. We have used a fiber 125 m
long, coupled at the end into a single-mode fiber that allows a delay of 600 ns of the
second photon with respect to the first.

Data availability
The data that support the findings of this study are available from the corresponding
author upon request.

Code availability
All the custom code developed for this study is available from the corresponding author
upon request. Furthermore, the code developed for the classical extractor is available at
https://github.com/michelemancusi/libtrevisan.
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